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SUMMARY 

In this paper the generation of general curvilinear co-ordinate systems for use in selected two-dimensional 
fluid flow problems is presented. The curvilinear co-ordinate systems are obtained from the numerical 
solution of a system of Poisson equations. The computational grids obtained by this technique allow for 
curved grid lines such that the boundary of the solution domain coincides with a grid line. Hence, these 
meshes are called boundary fitted grids (BFG). The physical solution area is mapped onto a set of connected 
rectangles in the transformed (computational) plane which form a composite mesh. All numerical calculations 
are performed in the transformed plane. Since the computational domain is a rectangle and a uniform grid 
with mesh spacings A( = Aq = 1 (in two-dimensions) is used, the computer programming is substantially 
facilitated. By means of control functions, which form the r.h.s. of the Poisson equations, the clustering of 
grid lines or grid points is governed. This allows a very fine resolution at certain specified locations and 
includes adaptive grid generation. The first two sections outline the general features of BFGs, and in 
section 3 the general transformation rules along with the necessary concepts of differential geometry are 
given. In section 4 the transformed grid generation equations are derived and control functions are specified. 
Expressions for grid adaptation are also presented. Section 5 briefly discusses the numerical solution of 
the transformed grid generation equations using sucessive overrelaxation and shows a sample calculation 
where the FAS (full approximation scheme) multigrid technique was employed. In the companion paper 
(Part II), the application of the BFG method to  selected fluid flow problems is addressed. 

KEY WORDS Computational Fluids Dynamics Numerical Grid Generation Two-dimensional Fluid Flow Problems 

1. INTRODUCTION 

Since BFGs are a novel approach to environmental flow computations, a basic introduction to 
their properties and their implementation will be presented. First, BFG methods will be put 
into historical context in relation to finite difference and finite element techniques. 

Until recently, most of the problems in computational fluid dynamics (CFD) were solved by 
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finite difference methods using Cartesian co-ordinate systems, i.e. rectangular grids. With the 
introduction of finite elements in CFD,'-3 problems of greater geometrical complexity could 
be solved. Finite elements, however, demand the construction of a table of nearest neighbours 
for the irregular grid, and the programming is therefore much more laborious. Furthermore, the 
matrices resulting from finite elements are in general not sparse and are more cumbersome to 
invert. Thacker4 used finite differences on an irregular grid and reported that for the case of the 
SWEs (shallow water equations) finite differences were approximately an order of magnitude 
faster than Galerkin finite elements when the same accuracy for both techniques was demanded, 
though the number of grid points for the finite element technique was smaller. Hence, a method 
which is generally applicable and which retains the computational efficiency of finite differences 
as well as the geometrical flexibility of finite elements would be desirable. To a large extent, 
BFGs provide these desirable features. A BFG exactly matches curved boundaries where the 
solution domain may also be multiply connected. However, all calculations are performed on 
a regular grid; that is, a square grid with uniform grid spacings is used. Such a grid must have 
certain features in order to produce meaningful numerical results of the governing physical 
equations. In particular, many of the grids generated by so called finite element grid generators 
are not well suited for time-dependent problems in CFD. 

BFGs are generated by co-ordinate transformations. The use of curvilinear co-ordinates is 
well known from general relativity and the concepts used there also apply to BFGs.'-" Two 
questions arise with the generation of computational grids. First, how to automatically generate 
grids which are well suited for CFD computations and, secondly, how to control grid point 
distribution. 

If, for example, Laplace's equation had to be solved on an annular ring, the natural choice 
would be the use of polar co-ordinates. In this case the approximation of the solution area by 
rectangles or triangles would not be considered optimal. Furthermore, for calculations on a 
sphere, spherical co-ordinates would be used, whereas elliptical co-ordinates would be the natural 
choice if the solution area was an ellipse. All these co-ordinate systems have in common that 
boundaries of the solution area coincide with co-ordinate lines. The solution area of an annulus 
is determined by r l  6 r 6 r2  and the azimuthal angle 0 < $ < 2.n. In the transformed plane 
having r and $ as co-ordinate axes, these co-ordinates define a rectangle. Figure 1 shows the 
mapping of a circle. Except for r = 0 the mapping is one-to-one. For the general application of 
BFGs to arbitrary solution domains, co-ordinate systems have to be found such that co-ordinate 
lines coincide with the boundaries of the solution area. 

According to the transformation, all PDEs (partial differential equations) and their respective 
BCs (boundary conditions) have to be transformed. If the grid is generated by the numerical 
solution of PDEs, these equations must also be transformed. All transformed equations, then, 
are solved in the computational plane. In simple cases, the solution area is mapped onto a single 
rectangle and the calculations are performed on the square grid which spans this rectangle. Since 

Figure I. Physical and transformed planes, exemplified for a circle and polar co-ordinates 
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all computations are on a regular grid, finite differences or discrete elements (finite volume) are 
Moreover, curved boundaries are accounted for and no loss of accuracy due to 

inaccurate modelling of the boundary occurs. Thirdly, grid point positions can be easily changed 
according to the needs of the physical solution. If a system of Poisson equations is employed 
for the calculation of grid point positions, the specification of appropriate control functions (see 
below) allows the desired clustering of grid points. Poisson equations have been used in the 
work of Thompson and  coworker^,'^-^^ where the r.h.s. governs grid line control. This can be 
visualized by an electrostatic problem where charges (r.h.s.) change the positions of the 
equipotential lines. 

Therefore, the problem of solving the governing equations on a complex solution domain has 
been modified to that of solving the transformed equations. On a uniform grid of rectangular 
shape in the computational plane the transformation generates additional terms but does not 
change the type of the equation. For more complicated solution domains the mapping onto a 
set of connected rectangles is necessary. In this case the physical domain is subdivided into a 
set of segments where each segment is then mapped onto a rectangle. Such a grid is called a 
composite or patched grid.” 

As has already been mentioned, the r.h.s. of Poisson’s equation allows comprehensive grid 
line control (the same is true for algebraic grid generation”). Moreover, i t  is possible to consider 
problems with time dependent geometry. This will also be useful for inundating flow. 

Grid point distribution can also be used to minimize numerical error2’ or to track the 
propagation of shock fronts. Again, this can also be achieved by algebraic grid generation.’ 

In addition to the work of Thompson et ul., parabolic and hyperbolic PDEs22.23 have been 
used to generate grids. Instead of solving PDEs, complex variable methods and algebraic methods 
have also been used. Unfortunately complex variable methods are restricted to two dimensions. 
Algebraic techniques use algebraic expressions to cluster grid points near fixed boundaries. A 
simple example of the algebraic technique is a domain normalizing transformation to generate 
a mesh for solution of the flow in a diverging nozzle. Algebraic methods have been developed, 
for example, by Eiseman and Smith.24.25 The proceedings published by Thompson,26 Smith2’ 
and Ghia2* also contain work on algebraic techniques. A short introduction to both algebraic 
and differential equation techniques is found in Reference 29. A concise review on grid generation 
techniques is found in Reference 30. There is a recent monograph on numerical grid generation 
by Thompson et uL3’ 

2. FEATURES OF BOUNDARY FITTED GRIDS 

In this section a survey of the features of BFGs is presented. All examples in this paper were 
obtained using a composite grid which is best suited for complex physical domains. 

For a specified solution domain several co-ordinate systems are possible. For example, polar 
co-ordinates map a circle onto a rectangle via a branch cut (Figure 1). Owing to this cut, the 
east and west sides of the rectangle in the computational plane correspond to the same physical 
locations. Therefore no BCs must be specified along these re-entrant boundaries. Another 
co-ordinate system for the circle is given in Figure 2. The transformation depicted in Figure 2 
maps only boundary points in the physical plane onto boundary points in the computational 
plane. This transformation has four singular points at the edges of the rectangle since in the 
physical plane 5 and q co-ordinate lines intersect at an angle z. 

For a multiply connected area more choices exist; e.g. for a doubly connected area a branch 
cut can be used (Figure 3) or slits (Figure 5 )  or slabs (Figure 6) can be employed. The grid point 
distributions resulting from the corresponding composite grids are depicted in Figure 8-10. The 
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Figure 2. Transformation of a circle onto a 

use of branch cuts corresponds to polar co-ordinates and gives a grid line pattern similar to the 
one obtained for an annular ring. 

Since absolute values of grid spacings in the computational plane are not important, they are 
set to 1. In two-dimensions, where co-ordinate lines are denoted by 5: and q, we have 
A4 = Aq = 1. Lines with a fixed (-value are called (-lines, i.e. y~ varies from 1 to M ,  where M 
indicates the number of grid points in this direction. The same holds for q-lines, where 5 varies 
from 1 to N .  

Figure 3 is an example for a region with two islands and the respective branch cuts. The 
corresponding grid line configuration is shown in Figure 4. If one visualizes the streamline 
pattern resulting from laminar flow past a cylinder, it can be easily shown that such a grid line 
pattern cannot be constructed via branch cuts. Consider for example a grid line which starts 
from the east side of the boundary in the physical plane and which ends at the west side (it is 
assumed that the shape of the solution area is such that east, west north and south sides exist). 
These two sides must be mapped onto opposite sides of the rectangle in the computational plane 
in order to obtain a grid line pattern like those in Figures 5 and 6. The same holds for the north 
and south sides in the physical plane. Hence, there is no possibility of mapping both the branch 
cut and the island onto the boundary of the rectangle in the computational plane. The island 
is therefore mapped onto a slit (Figure 5),  which is double-valued, or onto a slab (Figure 6). 
This approach poses the problem that within the computational grid there are points which lie 
outside the computational area and makes additional book keeping necessary. For more 
complicated solution domains the transformed area must be different from a rectangle (Figure 7). 
To overcome this problem, a composite grid is used. It is, however, necessary to specify the 
segmentation and to prescribe how individual segments are connected to each other. Using the 
concepts of differential geometry, an atlas of compatible charts is constructed which covers the 
physical solution area. The composite grids corresponding to Figures 4-6 are shown in 
Figures 8- 10, respectively. 

As has already been mentioned, Laplace or Poisson equations are used to determine grid 
point positions. It is known that the solution of a Laplace equation obeys a maximum principle. 
In order to retain this feature, the r.h.s. of Poisson's equation must be properly chosen. The 
electrostatic problem mentioned in the introduction leads to the grid line generation system 

A(=P;  Av=Q+BCs,  (1) 
where P and Q are functions of 4 and q or x and y .  If P and Q depend on x and y ,  iteration 
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v 
Figure 9. Segment structure for solution area shown in Figure 5 

Figure 10. Segment structure for solution area shown in Figure 6 

is necessary. It is sufficient to consider equations (l), since all regular co-ordinate systems satisfy 
these equations for appropriate functions P and Q. Since Dirichlet BCs are employed, that is 
values 5 = l(1)N are prescribed on the q-line boundaries q = 1 and q = M ,  and values y~ = 1( 1)M 
are used for the 5-line boundaries 5 = 1 and 5 = N ,  the respective x- and y-values are employed 
in the transformed plane. 

Many choices are possible for P and Q.'"-" In this paper we use the method of Middlecoff 
and Thomas3* where P and Q are calculated from the boundary point distribution and also 
give a method for grid adaptation. Grid points are clustered automatically in regions where 
boundary points are densely specified. In many cases only a few boundary points would suffice 
to describe the boundary. Since P and Q are calculated from the boundary point distribution, 
however, this requires the user to specify many more boundary points to achieve the desired 
grid point distribution. For this purpose an automatic grid doubling algorithm was written. 
Starting from a coarse initial grid, the grid is doubled each time the module is called. For 
problems concerned with composite meshes we refer to Reference 33. 

Upon calculation of grid point positions, a further module calculates the metric coefficients. 
The output of this module is the input for the solution module of the transformed physical 
equations. The pipe concept is used for the connection of all modules. It is mandatory that the 
solution module reflects the same segment structure as the grid generation program. Before the 
physical equations are discretized, they are written in contravariant form. 

In the numerical calculations it makes a difference whether covariant- or contravariant 
components are used. If, for example, the upwinding technique is used, contravariant components 
should be preferred since covariant base vectors are tangent to co-ordinate lines. Hence, numerical 
diffusion will be reduced by proper grid alignment. 
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3.  DIFFERENTIAL GEOMETRICAL METHODS FOR NUMERICAL 
GRID GENERATION 

In order to use BFGs, all equations must be expressed in curvilinear co-ordinates. Therefore 
the transformation rules between the different co-ordinate systems are necessary. To this end, 
we consider a physical solution domain M c R" and a manifold A c R" which denotes the 
transformed plane. It is assumed that a one-to-one and continuous mapping A + M exists with 

X ( t 1 , .  . . , 5"): = 

x'(51,. . 

x"(51,. . 

... 

... 

As an example, we consider the surface of a sphere where R" = R2 and t1 = 6, - 7112 < 6 < 7112; 

t2  = $, 0 < $ < 271. The co-ordinates xl, x2 and x3 correspond to the usual Cartesian co-ordinates 
x, y and z. In the physical space, we have the surface of a sphere, whereas in the transformed 
space 9 and $ form a rectangle. 

The tangent vectors or base vectors at a point P E M  are defined by 

ax 
atk' e : = -. k = l(1)rn. ( 3 )  

The tangent vector ek points in the direction of the respective co-ordinate line. These base 
vectors are called covariant base vectors. A second set of base vectors is defined by 

e' -e.=d' . .  3 3  (4) 

The ei are called contravariant base vectors and are orthogonal to the respective covariant 
vectors for i # j .  Covariant and contravariant vectors are related by the metric coefficients (see 
below). 

For the above example the two tangent vectors e, and eJI are obtained by differentiating each of 
the functions x(6, +), y(0, +) and z(6, $) with respect to either 6 or $. 

A physical vector can either be represented by contravariant or covariant components 

v = u'ei = up3 ,  ( 5 )  

where the summation convention is employed. In two-dimensions, contravariant components 
of a vector are found by parallel projection onto the axes, whereas covariant components are 
obtained by orthogonal projection. 

According to its transformation behaviour, a vector is called contravariant or covariant. Let 
g i  be the components of a vector in the co-ordinate system described by the x i  and let ui be the 
components in the system 5'.  

(a) A vector is a contravariant vector if its components transform in the same way as the co- 
ordinate differentials: 

. axi 

85' 
dx' = d5j (chain rule), 

( f i )  A vector is a covariant vector if it transforms in the same way as the gradient of a scalar 
function: 
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(7) 

In order to measure the distance between neighbouring points, the first fundamental form is 
introduced 

g..:= 1J e:e. I J '  (8) 
The g i j  are also called components of the metric tensor. The components of the inverse matrix 
are found from 

g.  1J .gik = ( j k  J '  (9) 

The distance ds between two neighbouring points is given by 

ds = J(gijdlid('). 

In Cartesian co-ordinates there is no difference between covariant and contravariant 
components since there is no difference between covariant and contravariant base vectors. 
Therefore the matrix &ij (the A denotes the Cartesian system) is the unit matrix. The components 
of gi j  in any other co-ordinate system can be directly calculated using the chain rule: 

In order to find the transformation rules of derivatives of scalars, vectors and tensors, the 
Christoffel symbols of the first and second kinds are introduced. Suppose that co-ordinate < j  

is changed by an amount d". This changes the base vector e, by de,. Since de, is a vector, it 
can be represented by the system of base vectors ek. Further, de, is proportional to d t j .  One 
can therefore write 

de, = r!jdgjek, (12) 

where the symbols r!j are only coefficients of proportionality. These symbols are also called 
Christoffel symbols of the second kind. Taking the scalar product with ek, one obtains directly 
from (12) 

rk. lJ = e. 1-J :ek, (13) 

where a comma denotes partial differentiation. The Christoffel symbols of the first kind are 
defined as 

rijk:= gilr:k. (14) 

If the base vectors are independent of position, the Christoffel symbols vanish. They are, however, 
not tensor components, which follows directly from their transformation behaviour. 

and the g l m  is found in the following way. Insertion of the 
definition of the metric components glm,  equation (8), into equation ( 1  3) and interchanging indices 

The relationship between the 

leads to 
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If we use equation (3), the definition of the tangent vector, along with equation (13), one obtains 
the computational useful form 

The knowledge of the grid point distribution, then, allows the numerical calculation of the 
Christoffel symbols. If we contract the Christoffel symbols, i.e. upper and lower indices are the 
same and are summed over, equation (15) yields 

where g is the determinant of the metric tensor, that is , / g  is the Jacobian of the transformation. 
In two-dimensions with curvilinear co-ordinates 5, q and Cartesian co-ordinates x, y ,  one finds 

J s  = J = (XyY, - Y&). 
In curved space, partial differentiation is replaced by covariant differentiation which takes 

into account the fact that base vectors themselves have non-vanishing spatial derivatives. In the 
following, the nabla operator 

is used. For the calculation of the cross product the Levi-Civita tensor is introduced. 

1, for i = I ,  J = 2, k = 3 and all even permutations, 

0, if any two indices are the same, (20) 
- 1, for all odd permutations, &..  *I lk .  .= [ 

where A again denotes the Cartesian co-ordinate system. From equation (7) we know the 
transformation law for covariant components, and hence 

where J is the Jacobian of the transformation. Forming the determinant from the components 
of equation (1 l), results in g = J 2 ,  and therefore 

&. IJk . = JgE*.. IJk ' (22) 

(23) 

(24) 

Raising the indices in equation (22) with the metric, one obtains 
E i j k  = J g & i j k .  

The cross product of two vectors a and b in any co-ordinate frame is then written as 

a x b = a'bje, x e j  = a'bjEijkek = Jg&ijkaibjek. 

It should be noted that equations (22) and (23) can also be derived by starting from the 
well-known relation in Cartesian co-ordinates 

6. 1 x 6 .  J = 6. .  IJk 6 k' (25) 
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Insertion of 

into equation (25) and multiplication of the resulting left and right hand sides by 
a i j  

axp ax. 

ep  x e, = Jgtpmen.  

with summation over i and j finally leads to 

(26) 
With the above equations it is now possible to derive the transformation rules (i)-(viii) needed 

for the Euler or SWEs and for the grid generation equations themselves: 
(i) Gradient of a scalar function k: 

(27) 
. a  
at '  

Vh = e l - k  = e 'h .  = gilk .e 
, I  1 .  

(ii) Gradient of a vector field u: 

(28) 
. a  . 

Vu = el-(uJej) = a t 1  
where equation (12) was used. 

(iii) Divergence of a vector field u: 

where equation (17) was used. 
(iv) Cross product of two vectors (here base vectors e ,  e j  since they are most often needed): 

e .  1 x e . =  J 8 . .  1Jk ek = J g t . .  IJk ek = Jt.. IJk ek. (30) 
It should be noted that this formula directly gives an expression for the area dAk and 
the volume dK 

dAk:= ds' x dd; dV:= dsk.(ds' x ds') 

where i, j, k are all different. The vector ds' is of the form ds': = eidti (no summation over i). 
Thus we obtain 

JdAkJ = J dt'dt'; dV = J d t '  dt'dtk. 

(v) Delta operator applied to a scalar function $: 

where the components of the gradient of equation (27) were inserted into equation (29). 
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(vi) 

(vii) 

(viii) 

J. HAUSER ET A L  

For transient solution areas, i.e. the solution area moves in the physical plane but is fixed 
in the computational domain, time derivatives in the two planes are related by 

where (axi/dt), are the corresponding grid speeds, which can be calculated from two 
consecutive grid point distributions. 
Relation between covariant and contravariant components of the metric tensor: 

Aik 
gik = -' 

9 
(33) 

where Aik denotes cofactor (i, k) of the matrix of the metric tensor. In two-dimensions we 
have 

g" =9-1g22; g ' L g 2 L  -g-1g12; g22=g-lgl l .  (34) 

Relationship between grid point distribution and Christoffel symbols, equation (1 6): 

There are 6 Christoffel symbols in two-dimensions and 18 in three-dimensions. Storage of 
Christoffel symbols for a staggered grid in three-dimensions will most likely not be possible since 
(18 + 1) x 4 x N computer words (the 1 comes from the Jacobian) would be necessary where N 
is the total number of grid points ( N  could be the number of elevation points if SWEs were 
solved). If metric coefficients are used in three-dimensions, (6 + 1) x 4 x N words were necessary. 
For a realistic value of some 20,000 grid points in three-dimensions, this requirement exceeds 
available storage for most machines. If interpolation of metric coefficients (dangerous) is used, 
the factor 4 can be eliminated. Even then, the storage needed is an order of magnitude higher 
than the number of grid points. Thus, one should consider the recalculation of the Christoffel 
symbols or the metric coefficients at each time step, using a vectorizable scheme. 

4. NUMERICAL GRID GENERATION 

We first consider the transformation of Poisson's equation. We start with a co-ordinate system 
x = x(5, v ] ) ,  y = y ( r ,  v ] ) .  The covariant base vectors are given by 

(36) T 
el = (x,, e2 = (X,' Y,) 

that is, e l  is tangential to an v]-line and e2 is tangential to a <-line. The superscript T means 
transposed, i.e. a vector is considered to be a one-column matrix. The components of the metric 
tensor are obtained from equation (8) 

91 1 = x: + Y:; 912 = 921 = x<x, + YyY,; 922 = x,' + Y,'. (37) 

The contravariant components are 

-912. g 2 2 = g l l .  (38) 11 -922; g l z = g 2 1  - 
9 9 

9 -  
9 

The contravariant base vectors ei are determined from equation (4). Using the matrix 
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E: = ( x g  x,) = (el,e2), 
Yr  Y, 

the inverse matrix is given by 

(39) 

(40) 

We find, since ei are the row vectors, 

el is perpendicular to e,, e2 
Since E-  is also given by 

el = (y,,, - x , ) ~ / J ;  e2 = (- y,, x < ) ~ / J .  (41) 
is perpendicular to e l  but el and e l  are in general not perpendicular. 

.'=( 5 ,  5, ), 
V X  v,  

we have 

We now reconsider the grid generation equations 

A<=P;  A q = Q .  (44) 
Using (v) ,  the traniformation equation of the Laplacian, and the fact that 5 and q are co-ordinates 
themselves, we find 

(454 

(45b) 

ik A5 = g ( 5 , i . k  - rik5,j) = - gike. . 4 .el 9 

- 1  
A t  = p C ( Y , ( g l l ~ g  + 2g12xgtl + gzzx,,) - x,(g"y<< + 2g"y;, + g22y,,)] = P.  

J g  

In a similar way we obtain for the q-co-ordinate 

$ 1  
A?=~CY,(g"~e;e;+2g12X,~+gZZ~,t l ) -Xx,(g"Y,,+ 2g1zy~,+g22y,,)] = Q .  (46) 

J g  

By means of (vii), the yiJ can be expressed in terms of g i j .  For stability reasons in the numerical 
iterative solution of the above system of equations, the above equations are rewritten in the 
form 

These equations are quasilinear, where the non-linearity appears in the expressions for the metric 
coefficients. 

The grid generation can be extended to two-dimensional co-ordinates on parametrized surfaces. 
The derivation of these equations is found in Reference 34. The fact that boundary curves are 
grid lines does not uniquely determine the co-ordinate system. Further requirements of the grid 
point distribution can be demanded, such as equidistance of grid points or orthogonality of grid 
lines. For an orthogonal grid it is necessary that boundary curves intersect at right angles. For 
the construction of orthogonal grids we refer to References 34-37. For internal flow, however, 
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it seems that orthogonal grids are not well suited. Since certain features of a grid must be globally 
satisfied, grids can also be obtained from variational  principle^.^^.^* 

If  we set control functions P and Q equal to zero in equations (47) and (48), we obtain the 
transformed Laplace equation. To visualize the distribution of grid lines by solution of Laplace's 
equation, one can assume that each grid point is coupled to its four nearest neighbours by 
springs having equal spring constants (Figure 11). The equilibrium of that spring model gives 
the distribution of co-ordinate points. If the distribution of boundary points is equidistant, one 
observes the following fact (which can be directly shown by explicit solution of Laplace's 
equation): A convex boundary (Figure 12(a)), repels grid lines, whereas a concave boundary, 
(Figure 12(b)), attracts grid lines. 

Very often, however, the opposite is desirable. For example, when a storm surge model is 
used for the calculation of the water level in a bay (convex area), high resolution near the shore 
is required. The simplest way to achieve this would be the change of the distribution of boundary 
points, i.e. to choose a dense distribution along the shoreline which forms the boundary of the 
bay. Since the Laplacian smoothes the effects coming from the boundary, the grid point 
distribution in the interior is not affected and remains nearly equidistant. For that reasons a 
Poisson equation is needed and control functions have to be determined. 

Since a boundary is either a (- or an ?-line (in two dimensions), all partial derivatives in the 
other direction vanish. At  the moment we assume that ( only depends on x, and only depends 
on y. If the boundary is not a straight line, x and y must be replaced by arc length s. If we 
determine P from a boundary formed by an ?-line (i.e. 5 varies) and Q from a boundary which 
is a (-line, we find from equations (47) and (48) 

Figure 11. Grid point distribution obtained from Laplace's equation; exemplified by spring model 

- 4 4 1  , , , , , , , , , ,  I 
0 0 5  I I 5  2 2 5  3 3 5  4 4 5  5 5 5  6 0 0 5  I 1 5  2 2 5  3 3 5  4 4 5  5 5 5  6 

x-direction x-direction 

Figure 12. Grid line distribution for convex (a) and concave (b) solution areas 
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Since xrr, xg as well as y,,, y, can be calculated from the boundary point distribution, 
equations (49) can be solved for P and Q,  yielding 

(50) 

The use of these control functions guarantees that the specified boundary point distribution is 
obtained. Moreover, if these control functions are employed in the interior of the solution domain, 
this yields the same grid point distribution along 5- and v]-lines as on the boundary. Figure 13 
shows the grid line distribution resulting from a non-equidistant boundary point distribution 
with and without the use of control functions. If boundary point distributions on top and bottom 
(or left and right) are different, the values of the control functions in the interior can be determined 
by linear interpolation. For curvilinear boundaries arc length s .replaces x and y. 

According to what was said above, a higher grid line concentration near the inner boundary 
of an annular ring is expected. In order to have an equidistant distribution, control functions 
have to be specified. Without control functions, the Laplace operator expressed in polar 
co-ordinates takes the form 

For an equidistant distribution in radial direction $ must be of the form $ = ur + b. Let $ satisfy 
the boundary condition $ = 1 for r = r l  and $ = N for r = r2 .  The solution of equation (51) is then 
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Figure 13. Grid line distribution for a rectangle with and without the use of control functions 



522 J. HAUSER ET AL.  

f m o x  -- 

Figure 14. In order to attract grid lines from both sides to the maximum, the control function P must 
satisfy P > 0 at the left of the maximum and P < 0 at the right 

Hence we obtain for the control function P 

where Ar = r2 - r l  and IC denotes curvature. Curvature is calculated on boundaries { = 1 and 
{ = N and determined from linear interpolation for the interior. In the same way control function 
Q is determined. In general, curvature is determined from 

K = (x’y” - y’”’)/(x’Z + y’2)3/2, (53) 
where any curve C is given by (x(t), y(t))= and ’ denotes derivation with respect to t .  In our case, 
boundary curves are parametrized by either < or v.  Since the control functions are computed 
from a monotonic function, no singularities can arise. 

Grid lines can also be attracted to extrema of the physical solution or to regions of high 
gradients. First, the one-dimensional case is considered. In order to attract grid lines, P must 
have the following properties (Figure 14). To the left of the maximum, grid lines must be moved 
in the direction of higher x values, that is P > 0 is necessary (this follows directly from solution 
of equation {,, = a for a < 0 and a > 0). To the right of the maximum, we have P < 0. A function 
which gives the right signs is the derivative f,. Since f, = 0 at the maximum, lines are moved 
only up to the maximum. Near f,,,, f, is small, which means that lines in the vicinity off,,, 
are only slightly moved. f, is multiplied by f which serves as a weight function. For P = fix, 
we find from 

(54) 

{= -  f2dX, (55 )  

4 x x  = p = f f x  
that 

2 ‘1 
which is a monotonic function in x. To concentrate grid lines near gradients, P has the form 
P = f ; f x x .  For the extension to two dimensions, f is differentiated in the direction of the 
co-ordinate lines < and v .  .fx is replaced by ,ft;/,/gll and f,,/Jg22. The factors l/Jg” and 
l / J g 2 2  ensure that the slope is measured in physical units and not in grid units. If the second 
derivatives are approximated by ,ftC/g’ and .f,,,/g22, the control functions written in analogy 
to equation (54) assume the form 

p = 4 5 ,  v).fJ&’ = 4 5 ,  v).f;.fy;J3/(~22)3/2, (56) 
Q = 4 C  v ) f , f , , / ( ~ ~ ~ ) ~ / ~  = 4 5 ,  v) fJ , , ,J3Mg1 1)3’2, (57) 
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Figure 15. Concentration of grid lines to a circle. The initial grid is a square grid 

where the functions c and d are additional normalizing functions. The term 1/J2 eliminates the 
factor which arises in the transformed equations (48). As an example of the control functions, 
Figure 15 depicts the concentration of grid lines to the extrema of the function 

f = CI tan h[D(r - $) - i]. (58)  

The initial grid is a square grid. The highest grid line density is for a circle of radius 4 with 
the origin at ($,$), which is the location of the maximum of the gradient. The magnitude of 
the gradient is changed by c1 and D. 

5. NUMERICAL SOLUTlON OF GRID GENERATION EQUATIONS 

In order to obtain the grid point distributions, equations (47) and (48) have to be solved 
numerically. To this end, the functions x ,  y, P and Q have to be discretized. Central differences 
are used for first derivatives: 

(59) 1 
(Xg1i.j = % ( X i +  1, j - x i -  1 , j ) ,  

where i ~ [ l ,  N], j ~ [ 1 ,  MI. First derivatives are needed for the components of the metric tensor. 
Second derivatives are discretized as follows: 

(xC5)i . j  = x i +  1,j - 2x i , j  + x i -  l , j 7  

( x t v ) i , j  = $ ( x i +  l , j +  1 - x i -  l , j +  1 - x i +  1 . j -  1 + xi-  1 . j -  1 ), 

( x  tltl ). 1.1 . = x i , j +  1 - 2 x i , j  + x i , j -  1. 

(60) 

Using the denotations IX, 28, y for the discretized forms of g Z 2 ,  g l2  and g l l  and writing J 2  
instead of g, equation (47) can be solved for x i , j ,  resulting in the following system of equations: 

x. .=(a.  1. j  .(x. i +  1. j  - xi-  1 . j )  
1.J 
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Table 1. Variation with w for the number of iterations for the free surface problem 

(U n w n w n w n 

1.45 83 1.70 42 1.75 36 1.80 41 
1.50 74 1.71 41 1.76 37 1.85 64 
1.55 66 1.72 39 1.77 38 1.90 92 
1.60 58 1.73 38 1.78 39 1.95 150 
1.65 50 1.74 36 1.79 40 
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Figure 16. Time dependent solution domain for the free surface problem. The number ofiterations for the generation of this 
grid strongly depends on Q, as  depicted in Table I. 
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Figure 17. 'Converged' solution for grid generation equations on a I25 x 65 grid. As start values, the co-ordinate values of 
the north side were used 

where i, j vary from 2 to N - 1 and from 2 to M - I ,  respectively. A similar equation holds for 
yi,j. This system of non-linear equations is solved by iteration. In order to increase convergence 
speed, SOR (successive overrelaxation) is used. Values from the previous iteration, xold, are 
compared with those of the current iteration, xi,. The differences of these values are amplified 
by a factor o to force the solution in this direction. The new values, x,,,, are calculated from 
the formula 

xnew = Xold + o ( X i r  - xold); 1 < < 2. (62) 

As is known from numerical experience, the convergence speed is susceptible to the value of w, 
in particular for time-dependent domains. Table I shows the numbers of iterations for different 
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values of w for the free surface problem (Figure 16). Although it is not necessary to solve 
equations (61) to a high degree of accuracy, it is necessary that the numerical error is sufficiently 
damped during each iteration. Since grid point i (one dimension considered for the moment) 
depends only on neighbouring points i - 1, i + 1, convergence at  i is determined by the difference 
of the errors at these points. If the errors have the same sign, the error at  i cannot vanish but 
is smoothed (averaged). Considering the Fourier components of the error function, one obtains 
from local mode a n a l y ~ i s ' ~  that wave lengths of 2A (A is grid spacing) are highly damped while 
error components of long wave lengths are nearly unaffected, since many iterations are needed to 
propagate improved values through the grid because only direct neighbours are coupled. 

Fourier transformation is not possible for the non-linear equations (6 1)  but numerical 
experiments show that damping of numerical error may be so slow for large grids (see Figure 17) 
that the criterion for ending the iteration process is reached before a satisfactory solution is 
computed. Figure 17 shows an attempt at  solving the transformed grid generation equations for 
a rectangle where a numerical error due to large wavelength components is present. An equidistant 
grid was the expected solution. If equations (61) are solved on grids with mesh spacings.. . , 
8A, 4A, 2A, A, each of these grids eliminates the error in a certain frequency range. This method is 
called the multigrid t e ~ h n i q u e . ~ ' - ~ ~  Using the FAS (full approximation scheme39), the above 
problem was solved in 1 second on a Siemens 7875 computer. 

It is felt that combination (where possible) of grid generation techniques and multigrid methods 
will substantially increase computational efficiency. It would be worth while to investigate the 
possible applications to transient fluid dynamics problems. 

The following is a summary of the steps for the grid generation program. First, it is necessary to 
input the boundary co-ordinate values along with the chosen segment structure. If necessary, the 
program calculates the values of the control functions from the boundary point distribution and 
solves equations (61). Only one iteration sweep per segment is performed where the sequence of the 
segments is determined from the specified input order. Segments which have a side in common are 
connected by an overlap of either one row or column of grid points;1g i.e. the boundary points of 
one segment are interior points in the neighbouring segment and vice versa. Hence boundary 
points on segment sides are automatically updated after each iteration sweep. The next module 
calculates the metric coefficients from the computed grid point positions. These values are then 
used in the solution module which will be discussed in the companion paper (Part 11). 

6. CONCLUSIONS AND OUTLOOK 

In this paper a description of the basic ideas and properties of BFGs was given. Furthermore, the 
general transformation laws for grid generation and physical equations were presented. It was 
shown that for large grids convergence problems in the solution of the grid generation equations 
can occur which can be overcome by use of the FAS multigrid technique. 

Since orthogonal grids do not seem to be advantageous for internal flow problems, their 
construction was not a d d r e ~ s e d . ~ ~ - ~ ~  It is believed that the use of composite grids can be directly 
extended to three-dimensional grids45*46 which are important for environmental flow problems. In 
a companion paper the application of the generated grids to selected two-dimensional fluid flow 
problems will be discussed.47 
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